BT

你的观点很重要! 快来参与InfoQ调研吧!

数据虚拟化:为AI与机器学习实现数据解锁

| 作者 Robert Alexander 关注 0 他的粉丝 发布于 2017年9月7日. 估计阅读时间: 9 分钟 | ArchSummit社交架构图谱:Facebook、Snapchat、Tumblr等背后的核心技术

出于可靠性、准确性以及性能表现等方面的考量,AI与机器学习技术在很大程度上皆须依赖于大型设备。这是因为数据池越大,训练模型的质量也就越高。正因为如此,大数据平台才必须能够高效处理各类不同数据流与系统,且不对具体数据结构(或者缺少清晰结构)、数据速度或者数据量作出限定。

然而,这项任务实在是说来容易做来难。

如今,每一套大数据平台都面临着以下系统性挑战:

  1. 计算/存储重叠:从传统角度讲,计算与存储两类资源从未被硬性拆分。然而随着数据量的不断增长,您必须同时为计算与存储规划投资。
  2. 数据的非统一式访问: 多年以来,对于业务运营及应用程序的高度依赖致使众多企业需要立足不同物理系统(包括文件系统、数据库与数据仓库(例如SQL Server或Oracle)乃至大数据系统(例如Hadoop)进行数据的获取、提取与存储。而种类繁多的系统各自拥有自己的数据访问方式。
  3. 硬件绑定计算: 您的数据已经拥有良好的存储模式(例如SQL Server),但您的硬件仍需要数小时时间才能完成查询操作。
  4. 远程数据: 数据可能分散在不同地理位置之间,或者采用不同的底层技术堆栈(例如SQL Server、Oracle、Hadoop等等),且被存储在内部设施或者云环境当中。这就要求原始数据需要以物理方式进行移动方可得到处理,这将极大提升网络I/O成本。

随着AI与机器学习技术的出现,解决这些挑战已经成为企业必须完成的重要任务。而数据虚拟化正是由此衍生而成的处理思路。

数据虚拟化是什么?

数据虚拟化提供抽象方法以处理并访问数据。其允许大家跨越不同流与系统结构实现数据管理与处理,且无需对数据的物理位置或者具体格式作出限定。数据虚拟化可被定义为一组工具、技术与方法集,其将帮助您在无需为数据物理位置以及计算处理资源分神的前提下,顺利实现与数据相关的访问与交互工作。

举例来说,假设您的大量数据分散在不同系统当,并希望能够在无需移动数据的情况下以统一方式对其进行查询,那么数据虚拟化技术绝对能够帮上大忙。

在今天的文章中,我们将介绍部分数据虚拟化技术,并阐述其如何改善大数据处理工作的效率与易行性。

数据虚拟化架构

我们可以利用Azure云上高级分析堆栈的lambda架构对数据虚拟化作出说明:

(点击放大图像)

图一:利用Azure平台服务的Lambda架构方案

在大数据处理平台当中,每秒数据提取量极大,而且其中必然同时包含静态数据与传输中数据。另外,这部分大数据会被收集至规范数据存储(例如Azure存储blob)体系内并随后进行清理、分区、聚合与准备,以待下游处理加以利用。常见的下游处理方法则包括机器学习、可视化、仪表板报告生成等等。

其下游处理则由SQL Server负责支持,而根据用户数量的不同,当各争用服务并发执行多项查询时可能引发过载。为了解决过载问题,数据虚拟化机制提供查询向外扩展能力,即将其中一部分计算任务迁移至其它更为强大的系统——例如Hadoop集群。

图一所示的另一种场景为在HDInsight(Hadoop)集群当中运行ETL进程。ETL转换可能需要访问存储在SQL Server当中的引用数据。

数据虚拟化亦提供混合执行能力,其允许您从远程存储(例如SQL Server)处查询引用数据。

查询向外扩展是什么?

假设您在一套硬件配置有限的环境当中运行多租户SQL Server,且希望将部分计算任务迁移出去以加快查询速度。另外,您可能还需要访问并不适合由SQL Server承载的大数据。在这类场景之下,查询向外扩展能够带来理想的效果。

查询向外扩展中使用PolyBase技术——这项技术由SQL Server 2016提供。PolyBase允许您立足一套速度更快且容量更高的大数据系统——例如Hadoop集群——以远程方式执行一部分查询任务。

查询向外扩展的具体实现架构如下图所示。

(点击放大图像)

图二:查询向外扩展的系统级图示

能够解决哪些问题?

  • 计算/存储重叠:您可以通过在外部集群中运行查询以将计算任务从存储当中分离出来。您可以在HDFS当中执行数据访问,从而扩展SQL Server存储。
  • 硬件绑定计算:您可以利用速度更快的系统运行并发计算任务。
  • 远程数据:您可以保证数据始终处于其原始位置,而仅返回处理后的结果集合。

您可以点击此处通过解决方案库中的一键式自动化演示对查询向外扩展机制进行深入探索与部署。

混合执行是什么?

假设您希望立足非结构化数据运行ETL进程,而后将数据存储在blob当中。这时您需要将此blob数据同存储在关系数据库内的引用数据加以合并。那么,我们该如何以统一化方式访问这些不同数据源?在这种情况下,混合执行将成为理想的解决方案。

混合执行允许您将查询“推送”至远程系统——例如SQL Server,并访问引用数据。

混合执行的架构如下图所示。

(点击放大图像)

图三:混合执行的系统级图标

能够解决哪些问题?

  • 数据的非统一式访问: 您不再需要受到数据存储位置及方式的限制。
  • 远程数据:您可以访问来自外部系统的引用数据以供下游应用使用。

您可以点击此处通过解决方案库中的一键式自动化演示对混合执行机制进行深入探索与部署。

性能基准:能够实现怎样的优化效果?

接下来的问题是,我们到底是否有必要使用这些技术?

查询向外扩展适用于数据已经存在于Hadoop当中的场景。参见图一,您可能并不打算将全部数据推送至HDInsight以了解具体性能提升。

(点击放大图像)

不过我们可以设想在HDInsight集群当中出现大量ETL进程,并将结构化结果发布至SQL Server以供下游消费(例如由报告工具使用)的情况。为了帮助大家了解使用这些技术所能带来的性能提升效果,以下为我们在解决方案演示当中所使用数据集的部分基准测试数据。这些数据来自多种不同数据集大小与HDInsight集群规模配伍方案。

图四:有扩展与无扩展条件下的查询执行时间变化情况

其中的x轴所示为基准测试所使用表内的行数。y轴则代表查询执行所经过的秒数。需要注意的是,纯SQL Server执行时间(蓝线)与HDInsight配合SQL Server查询向外扩展执行时间(橙线与灰线)皆呈现出线性递增趋势。而有趣的结果是,四工作节点HDInsight集群与双工作节点集群(灰线对橙线)之间的执行时间存在巨大差异。

当然,这些结果仅适用于我们在解决方案演示当中所使用的简化数据集与具体模式。在SQL Server当中通常承载着更为庞大的真实数据集,其通常会运行多项查询并导致资源争用,因此实际性能提升效果应该会更为显著。

接下来 的问题在于,我们该在怎样的情况下切换至查询向外扩展机制以获得成本效益?以下图表显示了本实验中所使用的具体资源定价。大家也可以点击此处查看更多具体定价计算方式。

(点击放大图像)

图五:有扩展与无扩展条件下的查询执行时间(与定价)

可以看到,在4000万行执行规模条件下,纯SQL Server式查询执行方法在成本上最为低廉。但当查询规模提升至1.6亿行时,向外扩展方法的成本开始占据优势。这意味着随着行数的增加,您将能够通过利用向外扩展选项降低查询成本。您可以利用此类基准测试与计算方法确保自身资源部署方案始终在性能与成本之间拥有最佳平衡点。

亲自动手——一键式部署

如果您有意体验本文中讨论的数据虚拟化技术,请您点击此处利用一键式自动部署方案在您的Azure订阅帐户中部署这套解决方案演示。

欲了解更多与数据虚拟化技术相关的深层实现信息,则可点击此处参阅我们的技术指南。

查看原文链接

评价本文

专业度
风格

您好,朋友!

您需要 注册一个InfoQ账号 或者 才能进行评论。在您完成注册后还需要进行一些设置。

获得来自InfoQ的更多体验。

告诉我们您的想法

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我
社区评论

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

讨论

登陆InfoQ,与你最关心的话题互动。


找回密码....

Follow

关注你最喜爱的话题和作者

快速浏览网站内你所感兴趣话题的精选内容。

Like

内容自由定制

选择想要阅读的主题和喜爱的作者定制自己的新闻源。

Notifications

获取更新

设置通知机制以获取内容更新对您而言是否重要

BT