BT

您是否属于早期采用者或者创新人士?InfoQ正在努力为您设计更多新功能。了解更多

Fn.py:享受Python中的函数式编程

| 作者 Alexey Kachayev 关注 0 他的粉丝 ,译者 邵思华 关注 0 他的粉丝 发布于 2013年3月12日. 估计阅读时间: 2 分钟 | 硅谷人工智能、机器学习、互联网金融、未来移动技术架构 ,尽在QCon上海2017

尽管Python事实上并不是一门纯函数式编程语言,但它本身是一门多范型语言,并给了你足够的自由利用函数式编程的便利。函数式风格有着各种理论与实际上的好处(你可以在Python的文档中找到这个列表):

  • 形式上可证
  • 模块性
  • 组合性
  • 易于调试及测试

虽然这份列表已经描述得够清楚了,但我还是很喜欢Michael O.Church在他的文章“函数式程序极少腐坏(Functional programs rarely rot)”中对函数式编程的优点所作的描述。我在PyCon UA 2012期间的讲座“Functional Programming with Python”中谈论了在Python中使用函数式方式的内容。我也提到,在你尝试在Python中编写可读同时又可维护的函数式代码时,你会很快发现诸多问题。

fn.py类库就是为了应对这些问题而诞生的。尽管它不可能解决所有问题,但对于希望从函数式编程方式中获取最大价值的开发者而言,它是一块“电池”,即使是在命令式方式占主导地位的程序中,也能够发挥作用。那么,它里面都有些什么呢?

Scala风格的Lambda定义

在Python中创建Lambda函数的语法非常冗长,来比较一下:

Python

map(lambda x: x*2, [1,2,3])

Scala

List(1,2,3).map(_*2)

Clojure

(map #(* % 2) '(1 2 3))

Haskell

map (2*) [1,2,3]

受Scala的启发,Fn.py提供了一个特别的_对象以简化Lambda语法。

from fn import _

assert (_ + _)(10, 5) = 15
assert list(map(_ * 2, range(5))) == [0,2,4,6,8]
assert list(filter(_ < 10, [9,10,11])) == [9]

除此之外还有许多场景可以使用_:所有的算术操作、属性解析、方法调用及分片算法。如果你不确定你的函数具体会做些什么,你可以将结果打印出来:

from fn import _ 

print (_ + 2) # "(x1) => (x1 + 2)" 
print (_ + _ * _) # "(x1, x2, x3) => (x1 + (x2 * x3))"

流(Stream)及无限序列的声明

Scala风格的惰性求值(Lazy-evaluated)流。其基本思路是:对每个新元素“按需”取值,并在所创建的全部迭代中共享计算出的元素值。Stream对象支持<<操作符,代表在需要时将新元素推入其中。

惰性求值流对无限序列的处理是一个强大的抽象。我们来看看在函数式编程语言中如何计算一个斐波那契序列。

Haskell

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

Clojure

(def fib (lazy-cat [0 1] (map + fib (rest fib))))

Scala

def fibs: Stream[Int] = 
     0 #:: 1 #:: fibs.zip(fibs.tail).map{case (a,b) => a + b} 

现在你可以在Python中使用同样的方式了:

from fn import Stream 
from fn.iters import take, drop, map
from operator import add

f = Stream()
fib = f << [0, 1] << map(add, f, drop(1, f))

assert list(take(10, fib)) == [0,1,1,2,3,5,8,13,21,34]
assert fib[20] == 6765
assert list(fib[30:35]) == [832040,1346269,2178309,3524578,5702887]

蹦床(Trampolines)修饰符

fn.recur.tco是一个不需要大量栈空间分配就可以处理TCO的临时方案。让我们先从一个递归阶乘计算示例开始:

def fact(n):
     if n == 0: return 1
     return n * fact(n-1)

这种方式也能工作,但实现非常糟糕。为什么呢?因为它会递归式地保存之前的计算值以算出最终结果,因此消耗了大量的存储空间。如果你对一个很大的n值(超过了sys.getrecursionlimit()的值)执行这个函数,CPython就会以此方式失败中止:

>>> import sys
>>> fact(sys.getrecursionlimit() * 2)
... many many lines of stacktrace ...
RuntimeError: maximum recursion depth exceeded

这也是件好事,至少它避免了在你的代码中产生严重错误。

我们如何优化这个方案呢?答案很简单,只需改变函数以使用尾递归即可:

def fact(n, acc=1):
     if n == 0: return acc
     return fact(n-1, acc*n)

为什么这种方式更佳呢?因为你不需要保留之前的值以计算出最终结果。可以在Wikipedia上查看更多尾递归调用优化的内容。可是……Python的解释器会用和之前函数相同的方式执行这段函数,结果是你没得到任何优化。

fn.recur.tco为你提供了一种机制,使你可以使用“蹦床”方式获得一定的尾递归优化。同样的方式也使用在诸如Clojure语言中,主要思路是将函数调用序列转换为while循环。

from fn import recur

@recur.tco 
def fact(n, acc=1):
     if n == 0: return False, acc
     return True, (n-1, acc*n)

@recur.tco是一个修饰符,能将你的函数执行转为while循环并检验其输出内容:

  • (False, result)代表运行完毕
  • (True, args, kwargs)代表我们要继续调用函数并传递不同的参数
  • (func, args, kwargs)代表在while循环中切换要执行的函数

函数式风格的错误处理

假设你有一个Request类,可以按照传入其中的参数名称得到对应的值。要想让其返回值格式为全大写、非空并且去除头尾空格的字符串,你需要这样写:

class Request(dict):
     def parameter(self, name):
         return self.get(name, None)

r = Request(testing="Fixed", empty=" ")
param = r.parameter("testing")
if param is None:
     fixed = ""
else:     
     param = param.strip()
     if len(param) == 0:
         fixed = ""
     else:
        fixed = param.upper() 

额,看上去有些古怪。用fn.monad.Option来修改你的代码吧,它代表了可选值,每个Option实例可代表一个Full或者Empty(这点也受到了Scala中Option的启发)。它为你编写长运算序列提供了简便的方法,并且去掉除了许多if/else语句块。

from operator import methodcaller
from fn.monad import optionable

class Request(dict):
     @optionable
     def parameter(self, name):
         return self.get(name, None)

r = Request(testing="Fixed", empty=" ")
fixed = r.parameter("testing") 
          .map(methodcaller("strip")) 
          .filter(len) 
          .map(methodcaller("upper")) 
          .get_or("")

fn.monad.Option.or_call是个便利的方法,它允许你进行多次调用尝试以完成计算。例如,你有一个Request类,它有type,mimetype和url等几个可选属性,你需要使用最少一个属性值以分析它的“request类型”:

from fn.monad import Option 

request = dict(url="face.png", mimetype="PNG") 
tp = Option \ 
         .from_value(request.get("type", None)) \ # check "type" key first 
         .or_call(from_mimetype, request) \ # or.. check "mimetype" key 
         .or_call(from_extension, request) \ # or... get "url" and check extension 
         .get_or("application/undefined")

其余事项?

我仅仅描述了类库的一小部分,你还能够找到并使用以下功能:

  • 22个附加的itertools代码段,以扩展内置module的功能的附加功能
  • 将Python 2和Python 3的迭代器(iterator)(如range,map及filtter等等)使用进行了统一,这对使用跨版本的类库时非常有用
  • 为函数式组合及partial函数应用提供了简便的语法
  • 为使用高阶函数(apply,flip等等)提供了附加的操作符

正在进行中的工作

自从在Github上发布这个类库以来,我从社区中收到了许多审校观点、意见和建议,以及补丁和修复。我也在继续增强现有功能,并提供新的特性。近期的路线图包括以下内容:

  • 为使用可迭代对象(iterable),如foldl,foldr增加更多操作符
  • 更多的monad,如fn.monad.Either,以处理错误记录
  • 为大多数module提供C-accelerator
  • 为简化lambda arg1: lambda arg2:…形式而提供的curry函数的生成器
  • 更多文档,更多测试,更多示例代码

链接

如果你想了解这个类库的更多信息,可以使用以下资源:

关于作者

Alexey Kachayev是一个精力充沛且狂热的程序员,开源社区的活跃者,并经常在各种技术会议中进行演讲。他是Kitapps Inc的CTO。Alexey在Python、Erlang、Clojure及函数式编程语言(如Haskel及Lisp)等方面经验最丰富。他主要的兴趣所在是分布式应用、云计算、实时web和编译原理等。Alexey也为CPython解释器和Storm(实时数据处理器)贡献过自己的力量。

查看英文原文Fn.py: Enjoy Functional Programming in Python


感谢杨赛对本文的审校。

给InfoQ中文站投稿或者参与内容翻译工作,请邮件至editors@cn.infoq.com。也欢迎大家通过新浪微博(@InfoQ)或者腾讯微博(@InfoQ)关注我们,并与我们的编辑和其他读者朋友交流。

评价本文

专业度
风格

您好,朋友!

您需要 注册一个InfoQ账号 或者 才能进行评论。在您完成注册后还需要进行一些设置。

获得来自InfoQ的更多体验。

告诉我们您的想法

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

语法错误了 by 小 张

assert (_ + _)(10, 5) = 15

Re: 语法错误了 by 王 不泽

from fn import _

Re: 语法错误了 by 王 不泽

抱歉,确实少了一个=

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

3 讨论

登陆InfoQ,与你最关心的话题互动。


找回密码....

Follow

关注你最喜爱的话题和作者

快速浏览网站内你所感兴趣话题的精选内容。

Like

内容自由定制

选择想要阅读的主题和喜爱的作者定制自己的新闻源。

Notifications

获取更新

设置通知机制以获取内容更新对您而言是否重要

BT