BT

如何利用碎片时间提升技术认知与能力? 点击获取答案

规模化时间序列数据存储Part1

| 作者 Netflix团队 关注 2 他的粉丝 ,译者 盖磊 关注 2 他的粉丝 发布于 2018年3月19日. 估计阅读时间: 14 分钟 | Google、Facebook、Pinterest、阿里、腾讯 等顶尖技术团队的上百个可供参考的架构实例!

引言

因特网互联设备的发展,提供了大量易于访问的时序数据。越来越多的公司有兴趣去挖掘这类数据,意图从中获取一些有意义的洞悉,并据此做出决策。技术的最新进展提高了时序数据的收集、存储和分析效率,激发了人们对如何处理此类数据的考量。然而,大多数现有时序数据体系结构的处理能力,可能无法跟上时序数据的爆发性增长。

作为一家根植于数据的公司,Netflix已习惯于面对这样的挑战,多年来一直在推进应对此类增长的解决方案。该系列博客文章分为两部分发表,我们将分享Netflix在改进时序数据存储架构上的做法,如何很好地应对数据规模的成倍增长。

时序数据:会员视频观看记录

每天,Netflix的全部会员会观看合计超过1.4亿小时的视频内容。观看一个视频时,每位会员会生成多个数据点,存储为视频观看记录。Netflix会分析这些视频观看数据,实时准确地记录观看书签,并为会员提供个性化推荐。具体实现可参考如下帖子:

视频观看的历史数据将会在以下三个维度上取得增长:

  1. 随时间的推进,每位会员会生成更多需要存储的视频观看数据。
  2. 随会员数量的增长,需要存储更多会员的视频观看数据。
  3. 随会员每月观看视频时间的增加,需要为每位会员存储更多的视频观看数据。

Netflix经过近十年的发展,全球用户数已经超过一亿,视频观看历史数据也在大规模增长。这篇博客帖子将聚焦于其中的一个重大挑战,就是我们的团队是如何解决视频观看历史数据的规模化存储的。

基本架构的初始设计

最初,Netflix的云原生存储架构使用了Cassandra存储观看历史数据。团队是出于如下方面的考虑:

  • Cassandra对时序数据的建模提供了很好的支持,支持一行中的列数动态可变。
  • 在观看历史数据上,读操作和写操作的数量比大约为1:9。因为Cassandra提供了非常高效的写操作,特别适用于此类写密集的工作负载。
  • CAP定理方面考虑,相对于可用性而言,团队更侧重于实现最终一致性。Cassandra支持可调整的一致性,有助于实现CAP上的权衡。

在最初的架构中,使用Cassandra存储所有会员的观看历史记录。其中,每位会员的观看记录存储为一行,使用CustomerId标识。这种水平分区设计支持数据存储随会员数量的增长而有效扩展,并支持简单并高效地读取会员的完整观看历史数据。这一读取操作是历史数据存储上最频繁发生的操作。然而,随着会员数量的持续增长,尤其是每位会员观看的视频流越来越多,存储的数据行数和整体数据量也日益膨胀。随着时间的推移,这将导致存储和操作的成本增大。而且对于观看了大量视频的会员而言,性能会严重降低。

下图展示了最初使用的数据模型中的读操作和写操作流。


图1:单表数据模型

写操作流

当一位会员开始播放视频时,一条观看记录会以一个新列的方式插入。当会员暂停或停止观看视频流时,观看记录会做更新。在Cassandra中,对单一列值的写操作是快速和高效的。

读操作流

为检索一位会员的所有观看记录,需要读取整行记录。如果每位会员的观看记录数量不大,这时读操作是高效的。如果一位会员观看了大量的视频,那么他的观看记录数量将会增加,即记录的列数增加。读取一个具有大量列的数据行,会对Cassandra造成了额外压力,进而对读操作延迟产生负面影响。

要读取一段时间内的会员数据,需要做一次时间范围查询。这同样会导致上面介绍的性能不一致问题。因为查询性能依赖于给定时间范围内的观看记录数量。

如果要查看的历史数据规模很大,需要做分页才能进行整行读操作。分页对Cassandra更好,因为查询不需要等待所有数据都就绪,就能返回给用户。分页也避免了客户超时问题。但是,随着观看记录的增长,分页增加了读取整行的整体延迟。

延迟的原因

下面介绍一些Cassandra的内部机制,进而理解为什么我们最初的简单设计会产生性能下降。随着数据的增长,SSTable的数量也随之增加。因为只有最近的数据是维护在内存中的,因此在很多情况下,检索观看历史记录时需要同时读取内存表和SSTable。这对于读取延迟具有负面影响。同样,随着数据的增长,合并(Compaction)操作将占用更多的IO和时间。此外,随着一行记录越来越宽,读修复(Read repair)全列修复(Full column repair)也会变慢。

缓存层

Cassandra可以很好地对观看数据执行写操作,但是需要改进读操作上的延迟。为优化读操作延迟,我们考虑以增加写路径上的工作为代价,在Cassandra存储前增加了一个内存中的分片缓存层(即EVCache)。缓存实现为一种基本的键-值存储,键是CustomerId,值是观看历史数据的二进制压缩表示。每次Cassandra的写操作,将额外生成一次缓存查找操作。一旦缓存命中,直接给出缓存中的已有值。对于观看历史记录的读操作,首先使用缓存提供的服务。一旦缓存没有命中,再从Cassandra读取条目,压缩后插入到缓存中。

在添加了缓存层后,多年来Cassandra单表存储方法一直工作很好。在Cassandra集群上,基于CustomerId的分区提供了很好的扩展。到2012年,查看历史记录的Cassandra集群成为了Netflix的最大专用Cassandra集群之一。为进一步实现存储的规模化,团队需要实现集群的规模翻番。这意味着,团队需要冒险进入Netflix在使用Cassandra上尚未涉足的领域。同时,Netflix业务也在持续快速增长,其中包括国际会员的增长,以及企业即将推出的自制节目业务。

重新设计:实时存储和压缩存储

很明显,为适应未来五年中企业的发展,团队需要尝试多种不同的方法去实现存储的规模化。团队分析了数据的特征和使用模式,重新定义了观看历史存储。团队给出了两个主要目标:

  • 更小的存储空间;
  • 考虑每位会员观看视频的增长情况,提供一致的读写性能。

团队将每位会员的观看历史数据划分为两个数据集:

  • 实时/近期观看历史记录(LiveVH):一小部分频繁更新的近期观看记录。LiveVH数据以非压缩形式存储,详细设计随后介绍。
  • 压缩/归档观看历史记录(CompressedVH):大部分很少更新的历史观看记录。该部分数据将做压缩,以降低存储空间。压缩观看历史作为一列,按键值存储在一行中。

为提供更好的性能,LiveVH和CompressedVH存储在不同的数据库表中,并做了不同的优化。考虑到LiveVH更新频繁,并且涉及的观看记录数量不大,因此可对LiveVH做频繁的Compaction操作。并且为了降低SSTable数量和数据规模,可以设置很小的gc_grace_seconds。为改进数据的一致性,也可以频繁执行读修复全列族修复(full column family repair)。而对于CompressedVH,由于该部分数据很少做更新操作,因此为了降低SSTable的数量,偶尔手工做完全Compaction即可。在偶尔执行的更新操作中,会检查数据一致性,因此也不必再做读修复以及全列族修复。

写操作流

对于新的观看记录,使用同上的方法写入到LiveVH。

读操作流

为有效地利用新设计的优点,团队更新了观看历史API,提供了读取近期数据和读取全部数据的选项。

  • 读取近期观看历史:在大多数情况下,近期观看历史仅需从LiveVH读取。这限制了数据的规模,进而给出了更低的延迟。
  • 读取完整观看历史:实现为对LiveVH和CompressVH的并行读操作。

考虑到数据是压缩的,并且CompressedVH具有更少的列,因此读取操作涉及更少的数据,这显著地加速了读操作。

CompressedVH更新流

在从LiveVH读取观看历史记录时,如果记录数量超过了一个预设的阈值,那么最近观看记录将由后台任务打包(roll up)、压缩并存储在CompressedVH中。打包数据存储在一个行标识为CustomerId的新行中。新打包的数据在写入后会给出一个版本,用于读操作检查数据的一致性。只有验证了新版本的一致性后,才会删除旧版本的打包数据。出于简化的考虑,在打包中没有考虑加锁,由Cassandra负责处理非常罕见的重复写问题(即以最后写入的数据为准)。


图2:实时数据和压缩数据的操作模型

如图2所示,CompressedVH的打包行中还存储了元数据信息,其中包括最新版本信息、对象规模和分块信息,细节稍后介绍。记录中具有一个版本列,指向最新版本的打包数据。这样,读取CustomerId总是会返回最新打包的数据。为降低存储的压力,我们使用一个列存储打包数据。为最小化具有频繁观看模式的会员的打包频率,LiveVH中仅存储最近几天的观看历史记录。打包后,其余的记录在打包期间会与CompressedVH中的记录归并。

通过分块实现自动扩展

通常情况是,对于大部分的会员而言,全部的观看历史记录可存储在一行压缩数据中,这时读操作流会给出相当不错的性能。罕见情况是,对于一小部分具有大量观看历史的会员,由于最初架构中的同一问题,从一行中读取CompressedVH的性能会逐渐降低。对于这类罕见情况,我们需要对读写延迟设置一个上限,以避免对通常情况下的读写延迟产生负面影响。

为解决这个问题,如果数据规模大于一个预先设定的阈值,我们会将打包的压缩数据切分为多个分块,并存储在不同的Cassandra节点中。即使某一会员的观看记录非常大,对分块做并行读写也会将读写延迟控制在设定的上限内。


图3:通过数据分块实现自动扩展

写操作流

如图3所示,打包压缩数据基于一个预先设定的分块大小切分为多个分块。各个分块使用标识CustomerId$Version$ChunkNumber并行写入到不同的行中。在成功写入分块数据后,元数据会写入一个标识为CustomerId的单独行中。对非常大的打包观看数据,这一做法将写延迟限制为两次写操作。这时,元数据行实现为一个不具有数据列的行。这种实现支持对元数据的快速读操作。

为加快对通常情况(即经压缩的观看数据规模小于预定的阈值)的处理,我们将元数据与观看数据合并为一行,消除查找元数据的开销,如图2所示。

读操作流

在读取时,首先会使用行标识CustomerId读取元数据行。对于通常情况,分块数是1,元数据行中包括了打包压缩观看数据的最新版本。对于罕见情况,存在多个压缩观看数据的分块。我们使用元数据信息(例如版本和分块数)对不同分块生成不同的行标识,并行读取所有的分块。这将读延迟限制为两次读操作。

改进缓存层

为了支持对大型条目的分块,我们还改进了内存中的缓存层。对于存在大量观看历史的会员,整个压缩的观看历史可能无法置于单个EVCache条目中。因此,我们采用类似于对CompressedVH模型的做法,将每个大型缓存条目分割为多个分块,并将元数据存储在首个分块中。

结果

在引入了并行读写、数据压缩和数据模型改进后,团队达成了如下目标:

  1. 通过数据压缩,实现了占用更少的存储空间;
  2. 通过分块和并行读写,给出了一致的读写性能;
  3. 对于通常情况,延迟限制为一次读写。对于罕见情况,延迟限制为两次读写。


图4:运行结果

团队实现了数据规模缩减约6倍,Cassandra维护时间降低约13倍,平均读延迟降低约5倍,平均写时间降低约1.5倍。更为重要的是,团队实现了一种可扩展的架构和存储空间,可适应Netflix观看数据的快速增长。

在该博客系列文章的第二部分中,我们将介绍存储规模化中的一些最新挑战。这些挑战推动了会员观看历史数据存储架构的下一轮更新。如果读者对解决类似问题感兴趣,可加入到我们的团队中

查看英文原文: Scaling Time Series Data Storage — Part I

感谢蔡芳芳对本文的审校。

评价本文

专业度
风格

您好,朋友!

您需要 注册一个InfoQ账号 或者 才能进行评论。在您完成注册后还需要进行一些设置。

获得来自InfoQ的更多体验。

告诉我们您的想法

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我
社区评论

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

讨论

登陆InfoQ,与你最关心的话题互动。


找回密码....

Follow

关注你最喜爱的话题和作者

快速浏览网站内你所感兴趣话题的精选内容。

Like

内容自由定制

选择想要阅读的主题和喜爱的作者定制自己的新闻源。

Notifications

获取更新

设置通知机制以获取内容更新对您而言是否重要

BT