BT

架构师特刊:机器学习实践

| 作者 InfoQ中文站 发布于 2017年1月22日 道AI风控、Serverless架构、EB级存储引擎,尽在ArchSummit!

目录

深度学习框架TensorFlow在Kubernetes上的实践

百度PaddlePaddle深度学习平台介绍

第四范式大规模机器学习先知平台的整体架构和实现细节

轻量级大规模机器学习算法库Fregata:快速,无需调参

Twitter机器学习平台的设计与搭建

机器排序学习在电商搜索中的实战

基于机器学习方法对销售预测的研究

卷首语

InfoQ编辑 Tina

机器学习,趁着近年来深度学习的热潮强势复苏,很快地从一个很少被大众关注的技术主题,转变为被很多人使用的管理工具和开发工具。其有效性被无数企业成功验证并推广应用,为了避免错失良机,企业需要设计自己的机器学习项目,比如在电商平台的推荐、排序业务中。在业务的多样性大的时候企业就需要考虑将机器学习系统平台化。对于学术界来说,学者们除了看重算法性能和运算效率之外,也希望机器学习平台容易调试、灵活性要强、迭代要快;而对于工业界更看重的是平台的稳定性强、处理大数据量、容易进行数据整合、高效率、低开发成本等。

InfoQ实际上已经积累了不少企业机器学习平台构建的内容,包括百度的PaddlePaddle,腾讯的Angel等。还有大规模机器学习平台,如第四范式的“先知”和TalkingData的Fregata,各有优点。

Tensorflow深度学习框架也应该开源一年了,经过了广泛应用和验证,本电子书里也收集了

一篇将Tensorflow应用于企业实践中的内容。另外还有将Deeplearning4j部署到生产环境。

机器学习企业实践也是少不了的,这些是将机器学习研究转化为真正的生产力,为用户带来实际价值,如:Twitter机器学习平台的设计与搭建、机器排序学习在1号店电商搜索中的实战、百分点基于机器学习方法对销售预测的研究等等。

InfoQ由社区推动,这里的内容源自像你一样的专业技术人,欢迎大家投稿机器学习的相关实践内容:editors@cn.infoq.com,促进大家共同进步。

登陆InfoQ,与你最关心的话题互动。


找回密码....

Follow

关注你最喜爱的话题和作者

快速浏览网站内你所感兴趣话题的精选内容。

Like

内容自由定制

选择想要阅读的主题和喜爱的作者定制自己的新闻源。

Notifications

不再错过InfoQ编辑特稿

“当你不知道某件事情的时候,你很难意识到。”想要改变?看看InfoQ编辑们的推荐内容吧。

BT