BT

如何利用碎片时间提升技术认知与能力? 点击获取答案

这一年来,数据科学家都用哪些算法?

| 作者 刘志勇 关注 2 他的粉丝 发布于 2017年2月3日. 估计阅读时间: 8 分钟 | Google、Facebook、Pinterest、阿里、腾讯 等顶尖技术团队的上百个可供参考的架构实例!

在“数据为王”的今天,越来越多的人对数据科学产生了兴趣。数据科学家离不开算法的使用,那么,数据科学家最常用的算法,都是哪些呢?

最近,著名的资料探勘信息网站KDnuggets策划了十大算法调查,这次调查对数据科学家常用的算法进行排名,并发现最“产业”和最“学术”的算法,还对这些算法在过去5年间(2011~2016)的变化,做了一番详细的介绍。

这次调查结果,是基于844名受访者投票整理出来。

KDnuggets总结出十大算法及其投票份额如下:

图1:数据科学家使用的十大算法和方法。

请参阅文末的所有算法和方法的完整列表。

从调查中得知,受访者平均使用8.1个算法,与2011年的一项类似调查相比大幅提高。

用于数据分析/数据挖掘的2011年投票算法相比,我们注意到流行的算法仍然是回归算法、聚类算法、决策树和可视化。相对来说最大的增长是以(pct2016/pct2011-1)测定的以下算法:

  • Boosting,从2011年的23.5%至2016年的32.8%,同比增长40%
  • 文本挖掘,从2011年的从27.7%至2016年的35.9%,同比增长30%
  • 可视化,从2011年的从38.3%至2016年的48.7%,同比增长27%
  • 时间序列分析,从2011年的从29.6%至2016年的37.0%,同比增长25%
  • 异常/偏差检测,从2011年的从16.4%至2016年的19.5%,同比增长19%
  • 集合方法,从2011年的从28.3%至2016年的33.6%,同比增长19%
  • 支持向量机,从2011年的从28.6%至2016年的33.6%,同比增长18%
  • 回归算法,从2011年的从57.9%至2016年的67.1%,同比增长16%

在2016年最受欢迎的新算法是:

  • K-近邻算法(K-nearest neighbors,KNN),46%份额
  • 主成分分析(Principal Commponent Analysis,PCA),43%
  • 随机森林算法(Random Forests,RF),38%
  • 最优化算法(Optimization),24%
  • 神经网络-深度学习(Neural networks-Deep Learning),19%
  • 奇异值矩阵分解(Singular Value Decomposition,SVD), 16%

跌幅最大的算法分别为:

  • 关联规则(Association rules),从2011年的28.6%至2016年的15.3%,同比下降47%
  • 增量建模(Uplift modeling),从2011年的4.8%至2016年的3.1%,同比下降36%
  • 因子分析(Factor Analysis),从2011年的18.6%至2016年的14.2%,同比下降24%
  • 生存分析(Survival Analysis),从2011年的9.3%至2016年的7.9%,同比下降15%

下表显示了不同算法类型的用途:监督学习、无监督学习、元分析和其他算法类型。我们排除了NA(4.5%)和其他(3%)的算法。

表1:按行业类型的算法使用

我们注意到,几乎所有人都在使用监督学习算法
政府和产业的数据科学家们比学生或学术界使用了更多的不同类型的算法,产业数据科学家更倾向使用元算法

接下来,我们分析深度学习的十大算法按行业类型的使用。

表2:深度学习的十大算法按就业类型的使用
Table 2: Top 10 Algorithms + Deep Learning usage by Employment Type

为了使差异更为醒目,我们计算特定行业类型相关的平均算法使用量设计算法为Bias(Alg,Type)=Usage(Alg,Type)/Usage(Alg,All)-1。

图2:按行业的算法使用偏差

我们注意到产业界数据科学家更倾向使用回归算法、可视化、统计算法、随机森林算法和时间序列。政府/非盈利组织更倾向使用可视化、主成分分析和时间序列。学术研究人员更倾向使用主成分分析和深度学习。学生通常使用算法较少,但他们用的更多的是文本挖掘和深度学习。

接下来,我们看看代表整体KDnuggets访客的地区参与情况。

参与投票者的地区分布如下:

  • 北美,40%
  • 欧洲,32%
  • 亚洲8%
  • 拉美,5.0%
  • 非洲/中东,3.4%
  • 澳洲/新西兰,2.2%

与2011年的调查一样,我们将产业/政府合并为同一个组,将学术研究人员/学生合并为第二组,并计算算法对产业/ 政府的“亲切度”:

N(Alg,Ind_Gov) / N(Alg,Aca_Stu)
------------------------------- - 1
N(Ind_Gov) / N(Aca_Stu)

亲切度为0的算法在产业/政府和学术研究人员/学生的使用情况相同。IG亲切度约稿表示该算法越“产业”,越低则表示越“学术”。

其中最“产业”的算法”是:

  • 增量建模(Uplift modeling),2.01
  • 异常检测(Anomaly Detection),1.61
  • 生存分析(Survival Analysis),1.39
  • 因子分析(Factor Analysis),0.83
  • 时间序列(Time series/Sequences),0.69
  • 关联规则(Association Rules),0.5

虽然增量建模又一次成为最“产业”的算法,但出乎意料的是它的使用率如此低:区区3.1%,在这次调查中,是使用率最低的算法。

最“学术”的算法是:

  • 神经网络(Neural networks - regular),-0.35
  • 朴素贝叶斯(Naive Bayes),-0.35
  • 支持向量机(SVM),-0.24
  • 深度学习(Deep Learning),-0.19
  • 最大期望算法(EM),-0.17

下图显示了所有算法以及它们在产业界/学术界的亲切度:

图3:Kdnugets调查:数据科学家使用的流行算法:产业界vs学术界

下表包含了算法的详细信息,在2016年和2011年使用它们的受访者百分比调查,变化(%2016 /%2011 - 1)和行业亲切度如上所述。

表3:KDnuggets2016调查:数据科学家使用的算法
下表包含各个算法的详细信息:

  • N: 根据使用度排名
  • Algorithm: 算法名称
  • Type:类型。S - 监督,U - 无监督,M - 元,Z - 其他,
  • 2016 % used:2016年调查中使用该算法的受访者比例
  • 2011 % used:2011年调查中使用该算法的受访者比例
  • %Change:变动 (%2016 / %2011 - 1)
  • Industry Affinity:产业亲切度(上文已提到)


感谢杜小芳对本文的审校。

给InfoQ中文站投稿或者参与内容翻译工作,请邮件至editors@cn.infoq.com。也欢迎大家通过新浪微博(@InfoQ@丁晓昀),微信(微信号:InfoQChina)关注我们。

评价本文

专业度
风格

您好,朋友!

您需要 注册一个InfoQ账号 或者 才能进行评论。在您完成注册后还需要进行一些设置。

获得来自InfoQ的更多体验。

告诉我们您的想法

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我
社区评论

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

讨论

登陆InfoQ,与你最关心的话题互动。


找回密码....

Follow

关注你最喜爱的话题和作者

快速浏览网站内你所感兴趣话题的精选内容。

Like

内容自由定制

选择想要阅读的主题和喜爱的作者定制自己的新闻源。

Notifications

获取更新

设置通知机制以获取内容更新对您而言是否重要

BT