BT

如何利用碎片时间提升技术认知与能力? 点击获取答案

Apple发布Core ML,为Apple设备提供了机器学习功能

| 作者 Roland Meertens 关注 7 他的粉丝 ,译者 Rays 关注 3 他的粉丝 发布于 2017年6月23日. 估计阅读时间: 2 分钟 | CNUTCon 了解国内外一线大厂50+智能运维最新实践案例。

Apple在WWDC 2017大会上发布了一种使用机器学习的方式,以及一种开发人员在自身应用中添加机器学习的方式。

Apple新发布的机器学习API称为Core ML,允许开发人员将机器学习模型集成到App中,App运行于采用iOS、macOS、watchOS和tvOS的Apple设备上。由于模型驻留在设备上,因此数据不会离开设备。

Core ML提供了应用开发人员可用的多种API调用,无需开发人员在App中额外添加任何模型。例如,它所提供的计算机视觉算法包括了面部识别和追踪、特征点检测和事件识别。开发人员也可调用Core ML做自然语言分析,例如实现对电子邮件、文本和Web页面的分析。自然语言处理API调用包括了语言检测、标记化(Tokenization)、词性标注(POS tagging)抽取和命名实体识别等。

开发人员也可以设计并使用自己的机器学习模型。Core ML支持超过30层的深度神经网络,也支持其他一些机器学习方法,例如SVM和线性模型。在设备上可以使用CPU和GPU,这为在Apple设备上运行强大的算法提供了很大的空间。

Apple提供了一些预先训练好的模型,开发人员可以下载它们到自己的App中。在Apple开发者网站上提供的一个模型可检测205种图像场景(例如候机楼或卧室)。另外还提供了三种模型,可用于检测图像中的对象。开发人员也可以使用Apple提供的转换工具,将一些已有的模型转换为Core ML格式。该工具支持的机器学习工具包括:Keras(使用Tensorflow作为后端)、Caffe、Scikit-learn、libsvm和XGBoost。但是它不支持将已有的Tensorflow模型导入Core ML中,这在用于Android的Tensorflow Lite上是支持的。

对于那些想在自身App中添加人工智能的开发人员,可以访问Core Ml的官方文档

查看英文原文: Apple Announces Core ML: Machine Learning Capabilities on Apple Devices

 

评价本文

专业度
风格

您好,朋友!

您需要 注册一个InfoQ账号 或者 才能进行评论。在您完成注册后还需要进行一些设置。

获得来自InfoQ的更多体验。

告诉我们您的想法

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我
社区评论

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

讨论

登陆InfoQ,与你最关心的话题互动。


找回密码....

Follow

关注你最喜爱的话题和作者

快速浏览网站内你所感兴趣话题的精选内容。

Like

内容自由定制

选择想要阅读的主题和喜爱的作者定制自己的新闻源。

Notifications

获取更新

设置通知机制以获取内容更新对您而言是否重要

BT