BT

如何利用碎片时间提升技术认知与能力? 点击获取答案

Real Data地产大数据上线,惠新宸谈链家大数据建设思路

| 作者 雨多田光 关注 7 他的粉丝 发布于 2017年12月26日. 估计阅读时间: 6 分钟 | QCon北京2018全面起航:开启与Netflix、微软、ThoughtWorks等公司的技术创新之路!

亲爱的读者:我们最近添加了一些个人消息定制功能,您只需选择感兴趣的技术主题,即可获取重要资讯的邮件和网页通知

12月21日,链家举办了2018年年度思享会。以“数据赋能,品质居住”为主题,会上链家研究院发布了地产大数据产品Real Data。我们在会场采访了链家集团技术副总裁,同时也是此次Real Data研发团队的负责人惠新宸(鸟哥),他为我们介绍了Real Data背后的核心技术和研发团队,以及数据赋能行业的一些思考。

Real Data是一个针对B端用户所开发的房地产领域一站式研究和数据服务平台。从项目团队上来看,鸟哥介绍,链家目前有1000多研发成员,大部分都来自于BAT等一线互联网公司,加上链家研究院专业的市场、行业分析师团队,他们中的一部分为Real Data提供了强大的专业支持。

链家集团技术副总裁 鸟哥惠新宸

Real Data 囊括城市基础数据库、市场数据库、用户行为数据库及集中式公寓字典四大数据库,支持多维交叉分析,形成用户画像,帮助开发商等使用客户定位潜客来源、预估客户交易行为以及挖掘客户需求偏好,预估用户中意房屋的类型等。

通常来说,房产大数据有两大核心指标:

  • 数据颗粒度。颗粒度越细,大数据的价值越高
  • 数据更新能力。数据更新能力越强,数据就会越真实越贴近市场。

Real Data正是在这样的要求下诞生的,它具有数据精细、真实,并且实时更新的特点。

首先是它的数据颗粒度,官方介绍,Real Data采用商圈层级数据统计方式,依据地理维度进行聚合,形成聚合后的区域热点,按照成交量、人流量及热度的不同,进行商圈层级的划分,相较于行政区域划分统计,数据颗粒度更细。未来Real Data还将细化到小区级别的数据统计,对小区楼栋,业态、户型、总价和面积段提供数据交叉分析。

据了解,Real Data收集的用户信息基本涵盖全面的人口属性数据,包括地域、年龄、性别、学历、职业、工作年限、收入、家庭结构等;购房行为属性数据,包括总价、面积、户型、贷款等;用户交易相关金融数据,贷款比例、利率、周期、杠杆使用等情况;住房需求,是否是刚需首套、刚需改善、中级改善、高端改善和顶级改善等,也即用户目前正处于哪一个需求阶段;以及链家首创的换房迁徙动态信息。以这些数据为基础,链家构建了Real Data潜客分析功能。而说到个人信息安全性问题,鸟哥说所有收集的用户信息都在注册链家网时用户须知上会进行提示,至于额外信息,除非用户自愿,否则不会进行收集。他同时还说明了这些数据的来源:通过链家PC和移动端所产生的定位、搜索、点击数据,以及与线下经纪人互动过程中产生的用户录入信息、带看、成交等数据。“数据安全是互联网数据公司的生命线。涉及到个体用户的隐私,我们有多重的保护,对所有的数据调用都是在脱敏的基础上,设置有限的调用权限。”鸟哥强调。

数据的真实性方面,首先,从渠道信息采集上看,线上链家网、链家APP已累计3000万注册用户量,日活跃用户达300W,线下遍布全国8000家门店,15万经纪人可实时采集成交数据。另一方面,链家的楼盘字典数据库囊括了全国36个重点核心城市8000万房源数据,容量达到了1200T,收录了包括房源房间门牌号、标准户型图、属性信息、配套设施信息、历史业务数据等多维度信息,它保障了房源的真实性。此外,链家采用数据筛选机制——元数据平台、自动清洗机制——剔除虚假信息,使用这些数据管理体系,以技术的形式保障数据真实可信。

“我们建设系统的思路是以数据为导向,围绕人、房、客三方建设系统,通过用户的数据以及在整个过程中实时产生的交互行为,来推动整个系统的建设。基于这一点,用户上一秒的交互,就会成为下一秒的推荐特征,这也保证了Real Data 产品实时画像能力的实现。”鸟哥介绍这是Real Data数据能实时更新的原因。因为目前大部分交易类的数据,包括签前、签中和签后的数据,都是通过系统得来的,这些从业务中产生的数据,本身具有实时性,而链家已经建立起了一个比较完善的系统,可以将数据向上汇集,这就保障了Real Data数据的实时性。同时,线上用户数据采集不断完善,这也使得链家的用户数据库趋于丰富,用户画像趋于精细化。

Real Data的这些特点,使其为政府、房企、金融机构等房产全产业链参与者提供精准数据服务和决策依据成为可能,鸟哥以金融领域为例举了一个简单的例子,他认为Real Data在金融领域有很大的应用空间,市场、区域商圈和用户信息数据能为泛金融领域的投资行为、贷款、房屋抵押估值、金融获客、营销策略和服务模式等提供参考价值。“Real Data的数据基础主要来源于链家的真实交易数据,是最接近市场的数据,离交易越近的数据,对用户的参考价值很大。”同时,Real Data对用户进行全方位的标签系统管理,用户金融标签,将对交易用户的收入支付能力、贷款数据和杠杆使用情况等进行细致的描绘,这些数据可以帮助金融用户更深刻地洞察用户。

最后鸟哥表示,未来,Real Data还将对已有的各项数据进行完善、扩充资产管理相关功能。此外,针对目前火热的租赁领域需求将推出一系列数据产品服务,用于辅助分散型、集中型租赁品牌的选址、定价与运营的策略制定,进一步扩大产品的应用空间。

评价本文

专业度
风格

您好,朋友!

您需要 注册一个InfoQ账号 或者 才能进行评论。在您完成注册后还需要进行一些设置。

获得来自InfoQ的更多体验。

告诉我们您的想法

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我
社区评论

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

讨论

登陆InfoQ,与你最关心的话题互动。


找回密码....

Follow

关注你最喜爱的话题和作者

快速浏览网站内你所感兴趣话题的精选内容。

Like

内容自由定制

选择想要阅读的主题和喜爱的作者定制自己的新闻源。

Notifications

获取更新

设置通知机制以获取内容更新对您而言是否重要

BT