BT

如何利用碎片时间提升技术认知与能力? 点击获取答案

使用TensorFlow和Kubernetes构建GPU加速工作流

| 作者 Srini Penchikala 关注 34 他的粉丝 ,译者 薛命灯 关注 23 他的粉丝 发布于 2018年1月11日. 估计阅读时间: 2 分钟 | 如何结合区块链技术,帮助企业降本增效?让我们深度了解几个成功的案例。

看新闻很累?看技术新闻更累?试试下载InfoQ手机客户端,每天上下班路上听新闻,有趣还有料!

Daniel Whitenack在最近举行的北美2017 KubeCon+CloudNativeCon大会上分享了如何使用TensorFlow和Kubernetes进行基于GPU的深度学习。

他以物体检测为例子介绍了一种典型的人工智能工作流程。该工作流程包括预处理、模型训练、模型生成和模型推理。这些步骤都可以运行在Docker容器里。

模型训练一般是通过框架来完成的,如TensorFlow或Caffe。在这一阶段,GPU可用于帮助提升性能。深度学习在使用TensorFlow或其他框架时,需要借助GPU在图像数据上训练模型。

模型训练可以运行在Kubernetes集群的GPU节点上。Kubernetes为多GPU节点提供了一个非常好的框架,按照如下步骤可实现更好的工作流:

  • 将数据正确地分配代码(pod)。
  • 在正确的节点上处理数据。
  • 在正确的时间触发正确的代码。

该工作流程也可以用于跟踪哪个版本的代码和数据产生了哪些结果(用于调试、维护和合规的目的)。

Kubernetes为此提供了基础支持,也因为它具备了可移植性和可伸缩性,所以非常适用于机器学习项目。

Whitenack介绍了一个叫作Pachyderm的开源项目,它支持数据管道,并为Kubernetes提供了数据管理层。工作流中一般会包含多个数据预处理和后处理作业。Pachyderm提供了统一的框架用于调度多步骤工作流、数据管理和向GPU分配工作负载。

Pachyderm框架的特性包括:

  • 数据版本:版本化的数据可存储在Amazon S3数据库里。
  • 用于分析的容器。
  • 分布式管道或数据处理DAG。
  • 数据监管:可用于合规和调试。

Whitenack在现场进行了演示,使用Pachyderm和Kubernetes实现了一个AI工作流。示例应用程序实现了图像到图像的转换,将卫星图自动转成地图。他在例子中使用TensorFlow进行模型训练和推理。

如果读者对Pachyderm框架感兴趣,可以参考机器学习示例开发者文档Kubernetes GPU文档,或者直接加入Slack通道

查看英文原文Building GPU Accelerated Workflows with TensorFlow and Kubernetes

评价本文

专业度
风格

您好,朋友!

您需要 注册一个InfoQ账号 或者 才能进行评论。在您完成注册后还需要进行一些设置。

获得来自InfoQ的更多体验。

告诉我们您的想法

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我
社区评论

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p

当有人回复此评论时请E-mail通知我

讨论

登陆InfoQ,与你最关心的话题互动。


找回密码....

Follow

关注你最喜爱的话题和作者

快速浏览网站内你所感兴趣话题的精选内容。

Like

内容自由定制

选择想要阅读的主题和喜爱的作者定制自己的新闻源。

Notifications

获取更新

设置通知机制以获取内容更新对您而言是否重要

BT