BT

Início Notícias Google usa Machine Learning para identificar aplicativos intrusos no Android

NOVIDADE: QCon.ai - Inteligência Aritificial aplicada para profissionais do desenvolvimento. De 15 a 17 de Abril de 2019 em São Francisco. Saiba mais!

Google usa Machine Learning para identificar aplicativos intrusos no Android

Favoritos

Os engenheiros de segurança do Google Martin Pelikan, Giles Hogben, e Ulfar Erlingsson, escreveram um algoritmo de cluster para analisar automaticamente os aplicativos Android e detectar quais podem ser considerados intrusos.

Os aplicativos intrusivos são aqueles que exigem que o usuário conceda um conjunto maior de funcionalidades do que seria estritamente necessário para o seu bom funcionamento. Por exemplo, um aplicativo para colorir não normalmente não precisa, ter acesso a dados de geolocalização. Outros exemplos de informações que nem todos os aplicativos necessitam para fazer seu trabalho são o acesso a dados pessoais, câmeras, catálogo de endereços, etc. Conceder mais privilégios do que o estritamente necessário é potencialmente prejudicial, já que você pode não saber para o que esses dados serão realmente usados. Entre os casos mais freqüentes de comportamentos prejudiciais desses aplicativos estão: backdoors, spyware, coleta de dados, negação de serviço e muito mais.

A abordagem que o Google segue para detectar aplicativos intrusivos baseia-se no conceito de agrupamento por funcionalidade, ou seja, um grupo de aplicativos que compartilham recursos semelhantes e que, portanto, devem exigir um conjunto similar de autorizações. Uma vez que esses grupos são formados, torna-se possível detectar aplicativos anormais em cada grupo, ou seja, aqueles aplicativos que exigem mais privilégios do que aplicativos similares. Esta abordagem requer o monitoramento do Android Play Store, coletando estatísticas detalhadas e descobrindo as expectativas dos usuários, para que os grupos de aplicativos possam ser determinados automaticamente. De acordo com os engenheiros do Google, a categorização fixa e manual seria uma tarefa tediosa e propensa a erros.

Para tornar essa abordagem mais eficaz, o Google usa Deep Learning para descobrir grupos de aplicativos que compartilham características semelhantes usando os metadados destas aplicações, que incluem descrições textuais e métricas de instalação. Uma vez que os grupos são definidos, a detecção de anomalias é usada dentro de cada grupo para identificar aplicativos anormais, ou seja, aplicativos que mostram uma incompatibilidade entre os privilégios que eles exigem e suas funcionalidades. Esses aplicativos são inspecionados cuidadosamente para decidir quais são realmente intrusivos. Essa informação é usada também para determinar quais aplicativos devem ser promovidos, bem como para entrar em contato com desenvolvedores de aplicativos potencialmente intrusos e ajudá-los a melhorar a privacidade e segurança destes apps.

Avalie esse artigo

Relevância
Estilo/Redação

Olá visitante

Você precisa cadastrar-se no InfoQ Brasil ou para enviar comentários. Há muitas vantagens em se cadastrar.

Obtenha o máximo da experiência do InfoQ Brasil.

HTML é permitido: a,b,br,blockquote,i,li,pre,u,ul,p

Comentários da comunidade

  • Podem também introduzir uma avaliação do usuário

    by Matteus Barbosa /

    Seu comentário está aguardando aprovação dos moderadores. Obrigado por participar da discussão!

    O usuário pode classificar a categoria do aplicativo pra otimizar esse agrupamento.

HTML é permitido: a,b,br,blockquote,i,li,pre,u,ul,p

HTML é permitido: a,b,br,blockquote,i,li,pre,u,ul,p

BT

Seu cadastro no InfoQ está atualizado? Poderia rever suas informações?

Nota: se você alterar seu email, receberá uma mensagem de confirmação

Nome da empresa:
Cargo/papel na empresa:
Tamanho da empresa:
País:
Estado:
Você vai receber um email para validação do novo endereço. Esta janela pop-up fechará em instantes.