InfoQ ホームページ MachineLearning に関するすべてのコンテンツ
-
GoogleがA2バーチャルマシンの一般提供を発表
先頃、Googleは、Compute EngineにNVIDIA Ampere A100 Tensor Core GPUに基づくA2バーチャルマシン (VM) の一般提供を発表した。同社によれば、A2 VMにより、顧客はNVIDIA CUDA対応の機械学習 (ML) とハイパフォーマンスコンピューティング (HPC) のスケールアウトおよびスケールアップワークロードを低コストで効率的に実行できるようになる。
-
Alibaba Announces 10 Billion Parameter Multi-Modal AI M6
AlibabaはMulti-Modality to Multi-Modality Multitask Mega-transformer(M6)と称するAIモデルを開発した。100億のパラメータを持ち、1.9TBのイメージと292GBの中国語テキストで構成されたデータセットを使ってプレトレーニングされている。テキストガイド付きイメージの作成、VQA(Visual Question and Answering、視覚に基づく質疑応答)、イメージ-テキストマッチングなど、いくつかのダウンストリームタスクに合わせたファインチューニングが可能だ。
-
チップ設計用のGoogle Apollo AIが、深層学習のパフォーマンスを25%向上する
Google Researchの科学者は、AIアクセラレータチップの設計を最適化するためのフレームワークであるAPOLLOを発表した。APOLLOは、チップ面積を最小限に抑えながら、深層学習の推論待ち時間を最小限に抑えるチップパラメータを選択するために進化的アルゴリズムを使用する。APOLLOを使用することで、研究者は、ベースラインアルゴリズムによって選択されたものよりも24.6%の高速化を達成する設計を発見した。
-
Google DeepMindのNFNetがディープラーニングを効率化
Amazon Redshiftのユーザは、クロスデータベースクエリを実行し、Redshiftクラスタ間でデータを共有できるようになった。これは、AWSがこれらの拡張機能を一般ユーザ向けにリリースしたことによる。
-
PyTorch 1.8がリリース - 分散トレーニングを強化、AMD ROCmをサポート
Facebookの開発したオープンソースのディープラーニングフレームワークであるPyTorchが、バージョン1.8のリリースを発表した。APIがアップデートされ、分散トレーニングが改善された他、AMDのGPUアクセラレータ用のROCmプラットフォームのサポートが追加されている。ドメイン固有ライブラリであるTorchVision、TorchAudio、TorchTextの新バージョンも同時にリリースされた。
-
マシンラーニングをテストとメンテナンス作業で使用する
マシンラーニングを使えば、メンテナンス作業の削減とプロダクトの品質向上が可能になる。ソフトウェアのテストサイクルのさまざまなステージで使用することができる。チェーンの重要なパートであるバグ管理もその中に含まれる。マシンラーニングアルゴリズムを使って大量のデータを分析することで、バグの分類やトリアージ、優先順位付けをより効率的に行えるようになる。
-
スタンフォードがAI Index 2021 年次報告書を発行
スタンフォード大学の人間中心人工知能研究所(HAI)は、AI Index 年次報告書を発表した。今年のレポートの基礎となるデータは、前年に比べて拡張されており、レポートには、AI研究開発に関してCOVID-19パンデミックの影響に関するいくつかの視点が含まれている。
-
Amazon Lookout for Visionが一般提供に
Amazonは先頃、機械学習を使用して画像を処理し、製造された製品のプロセスの欠陥や異常を特定する異常検出製品であるAmazon Lookout for Visionの一般提供を発表した。
-
GoogleがAutoMLアルゴリズムのModel Searchのソースを公開
Google Researchの研究チームが、ディープラーニングモデル用に設計された自動マシンラーニング(AutoML)プラットフォームのModel Searchを、オープンソースとして公開した。試験ではシステムの作り出したモデルが、人が設計した最高のモデルを、より少ないトレーニング回数とモデルパラメータで能力的に上回る結果が示されている。
-
Azure Arc対応の機械学習がプレビュー版へ
Azure Arcは、顧客がAWSやGoogle CloudなどのあらゆるインフラストラクチャにAzureサービスと管理を提供できるようにするためのMicrosoft製品である。今年、仮想Ignite会議中に、同社はAzure Arc対応の機械学習のプレビュー版を発表した。これにより、Azureの機械学習機能がハイブリッド環境とマルチクラウド環境に拡張される。
-
TensorFlow 3D:自動運転車の3D知覚のためのディープラーニング
Googleは、TensorFlow 3Dをリリースした。これは、TensorFlow機械学習フレームワークに3Dディープラーニング機能を加えるライブラリである。新しいライブラリは、研究者が3Dシーン理解モデルを開発およびデプロイできるようにするツールとリソースを提供する。
-
Facebook、COVID-19患者の経過を予測するAIモデルをオープンソース公開
Facebook AI Research(FAIR)のチームとNew York University(NYU) School of Medicineは共同で、胸部X線を使ってCOVID-19患者の予後予測を行うディープラーニングモデルを開発した。比較調査の結果では、このモデルは人間の放射線科医を上回っており、病院における酸素吸入や集中治療の需要予測を支援するために使用できる。
-
NLPライブラリのspaCy 3.0にTransformerベースのモデルと分散トレーニングが追加
AIソフトウェアメーカーのExplosionは、オープンソースの自然言語処理(NLP)ライブラリであるspaCyのバージョン3.0を発表した。新しいリリースには、最先端のTransformerベースのパイプラインと17言語用の事前トレーニング済みモデルが含まれている。
-
Microsoft SatinオーディオコーデックはAIを使用してSkype Silkよりも優れたパフォーマンスを得た
MicrosoftはSatinを発表した。これは、超低帯域幅と高度に制約されたネットワーク条件でSkypeのSilkコーデックよりも優れたパフォーマンスを得るためのAI技術を活用した新しいオーディオコーデックである。
-
Googleは兆パラメータのAI言語モデルSwitch Transformerをオープンソース化
Google Brainの研究者は、自然言語処理 (NLP) AIモデルであるSwitch Transformerをオープンソース化した。このモデルは、最大1.6兆のパラメータにスケールアップし、T5 NLPモデルと比較して最大7倍のトレーニング時間を改善し、同等の精度を実現する。