InfoQ Homepage Agents Content on InfoQ
-
From Alert Fatigue to Agent-Assisted Intelligent Observability
As systems grow, observability becomes harder to maintain and incidents harder to diagnose. Agentic observability layers AI on existing tools, starting in read-only mode to detect anomalies and summarize issues. Over time, agents add context, correlate signals, and automate low-risk tasks. This approach frees engineers to focus on analysis and judgment.
-
Autonomous Big Data Optimization: Multi-Agent Reinforcement Learning to Achieve Self-Tuning Apache Spark
This article introduces a reinforcement learning (RL) approach grounded in Apache Spark that enables distributed computing systems to learn optimal configurations autonomously, much like an apprentice engineer who learns by doing. The author also implements a lightweight agent as a driver-side component that uses RL to choose configuration settings before a job runs.
-
Virtual Panel - AI in the Trenches: How Developers Are Rewriting the Software Process
This virtual panel brings together engineers, architects, and technical leaders to explore how AI is changing the landscape of software development. Practitioners share their insights on successes and failures when AI is incorporated into daily workflows, emphasizing the significance of context, validation, and cultural adaptation in making AI a sustainable element of modern engineering practices.
-
Article Series: AI-Assisted Development: Real World Patterns, Pitfalls, and Production Readiness
In this series, we examine what happens after the proof of concept and how AI becomes part of the software delivery pipeline. As AI transitions from proof of concept to production, teams are discovering that the challenge extends beyond model performance to include architecture, process, and accountability. This transition is redefining what constitutes good software engineering.
-
NextGen Search - Where AI Meets OpenSearch through MCP
In this article, authors Srikanth Daggumalli and Arun Lakshmanan discuss next-generation context-aware conversational search using OpenSearch and AI agents powered by Large Language Models (LLMs) and Model Context Protocol (MCP).
-
Trustworthy Productivity: Securing AI Accelerated Development
Autonomous AI agents amplify productivity but can cause severe damage without safeguards. Defend the ReAct loop—context, reasoning, and tools—through provenance gates, planner-critic separation, scoped credentials, sandboxed code, and STRIDE/MAESTRO threat modeling. With robust logging, bounded autonomy, and red-teaming, agents can deliver trustworthy productivity while minimizing risk.
-
InfoQ AI, ML and Data Engineering Trends Report - 2025
This InfoQ Trends Report offers readers a comprehensive overview of emerging trends and technologies in the areas of AI, ML, and Data Engineering. This report summarizes the InfoQ editorial team’s and external guests' view on the current trends in AI and ML technologies and what to look out for in the next 12 months.
-
MCP: the Universal Connector for Building Smarter, Modular AI Agents
In this article, the authors discuss Model Context Protocol (MCP), an open standard designed to connect AI agents with tools and data they need. They also talk about how MCP empowers agent development, and its adoption in leading open-source frameworks.
-
The Missing Layer in AI Infrastructure: Aggregating Agentic Traffic
In this article, author Eyal Solomon discusses AI Gateways, the outbound proxy servers that intercept and manage AI-agent-initiated traffic in real time to enforce policies and provide central management.
-
Keep the Terminal Relevant: Patterns for AI Agent Driven CLIs
Well-designed CLIs are crucial in the agentic AI era—serving both human users and autonomous agents with precision and reliability. Treat CLI output formats as stable API contracts and prioritize adoption of the MCP protocol for agent integration from day one.
-
Agentic AI Architecture Framework for Enterprises
To deploy agentic AI responsibly and effectively in the enterprise, organizations must progress through a three-tier architecture, Foundation tier, Workflow tier, and Autonomous tier where trust, governance, and transparency precede autonomy.
-
InfoQ Software Architecture and Design Trends Report - 2025
The InfoQ Trends Reports offer InfoQ readers a comprehensive overview of key topics worthy of attention. The reports also guide the InfoQ editorial team towards cutting-edge technologies in our reporting. In conjunction with the report and trends graph, our accompanying podcast features insightful discussions among the editors digging deeper into some of the trends.