InfoQ Homepage Automated Machine Learning Content on InfoQ
Articles
RSS Feed-
AutoML: the Promise vs. Reality According to Practitioners
Automation to improve machine learning projects comes from a noble goal, but true end-to-end automation is not available yet. As a collection of tools, AutoML capabilities have proven value but need to be vetted more thoroughly. Findings from a qualitative study of AutoML users suggest the future of automation for ML and AI rests in the ability for us to realize the potential of AutoMLOps.
-
State of the Art in Automated Machine Learning
InfoQ caught up with experts Francesca Lazzeri, machine learning scientist lead at Microsoft; Matthew Tovbin, co-founder of Faros AI; Adrian de Wynter, applied scientist in Alexa AI’s Secure AI Foundations; Leah McGuire, principal member of technical staff at Salesforce; and Marios Michailidis, data scientist at H2O.ai, about the state of the art in automated machine learning (AutoML).