InfoQ Homepage AI Architecture Content on InfoQ
-
QCon London 2026 Announces Tracks: AI Engineering, Building Teams, Tech of Finance, and More
The QCon London 2026 tracks are live: 15 practitioner-curated deep dives on AI adoption, resilient architectures, distributed systems, performance, modern languages, data, security, and Staff+ leadership, rooted in real production lessons.
-
Inside the Architectures Powering Modern AI Systems: QCon San Francisco 2025
Senior engineers face fast-moving AI adoption without clear patterns. QCon SF 2025 brings real-world lessons from teams at Netflix, Meta, Intuit, Anthropic & more, showing how to build reliable AI systems at scale. Early bird ends Nov 11.
-
Open Practices for Architecture and AI Adoption
Andrea Magnorsky presented on Byte-Sized Architecture at Cloud Native Summit 2025, as a format for building shared understanding through small, recurrent workshops. Ahilan Ponnusamy and Andreas Spanner discussed the Technology Operating Model for AI adoption. Both approaches drew on the Open Practice Library for human-centred collaboration and driving architectural evolution.
-
How Netflix is Reimagining Data Engineering for Video, Audio, and Text
Netflix has introduced a new engineering specialization—Media ML Data Engineering, alongside a Media Data Lake designed to handle video, audio, text, and image assets at scale. Early results include richer ML models trained on standardized media, faster evaluation cycles, and deeper insights into creative workflows.
-
“A Security Nightmare”: Docker Warns of Risks in MCP Toolchains
A new blog post from Docker warns that AI-powered developer tools built on the Model Context Protocol (MCP) are introducing critical security vulnerabilities — including real-world cases of credential leaks, unauthorized file access, and remote code execution.
-
Databricks Agent Bricks Automates Enterprise AI Development with TAO and ALHF Methods
Databricks introduced Agent Bricks, a new product that changes how enterprises develop domain-specific agents. The automated workflow includes generating task-specific evaluations and LLM judges for quality assessment, creating synthetic data that resembles customer data to supplement agent learning, and searching across optimization techniques to refine agent performance.
-
Amazon Launches Bedrock AgentCore for Enterprise AI Agent Infrastructure
Amazon announced the preview of Amazon Bedrock AgentCore, a collection of enterprise-grade services that help developers deploy and operate AI agents at scale across frameworks and foundation models. The platform addresses infrastructure challenges developers face when building production AI agents.
-
GitHub Unveils Prototype AI Agent for Autonomous Bug Fixing
GitHub unveils a groundbreaking AI coding agent that autonomously identifies bugs and proposes fixes via pull requests, marking a shift towards independent code maintenance. Leveraging advanced semantic analysis and vulnerability libraries, this tool aims to alleviate developers' workload, allowing them to prioritize complex problem-solving.
-
AWS Introduces Open Source Model Context Protocol Servers for ECS, EKS, and Serverless
AWS has launched open-source Model Context Protocol (MCP) servers on GitHub to supercharge AI development within Amazon ECS, EKS, and Serverless environments. These specialized tools equip developers with real-time, context-specific insights, enhancing application deployment, troubleshooting, and operational efficiency. Empower your cloud experience today!
-
HashiCorp Releases Terraform MCP Server for AI Integration
HashiCorp has released the Terraform MCP Server, an open-source implementation of the Model Context Protocol designed to improve how large language models interact with infrastructure as code.
-
OpenAI’s Stargate Project Aims to Build AI Infrastructure in Partner Countries Worldwide
OpenAI has announced a new initiative called "OpenAI for Countries" as part of its Stargate project, aiming to help nations develop AI infrastructure based on democratic principles. This expansion follows the company's initial $500 billion investment plan for AI infrastructure in the United States.
-
DeepSeek Launches Prover-V2 Open-Source LLM for Formal Math Proofs
DeepSeek has released DeepSeek-Prover-V2, a new open-source large language model specifically designed for formal theorem proving in Lean 4. The model builds on a recursive theorem proving pipeline powered by the company's DeepSeek-V3 foundation model.
-
Scaling Financial Operations: Uber’s GenAI-Powered Approach to Invoice Automation
Uber recently described a GenAI-powered invoice processing system that reduced manual effort by 2x, cut handling time by 70%, and delivered 25–30% cost savings. By leveraging GPT-4 and a modular platform called TextSense, Uber improved data accuracy by 90%, enabling globally scalable, efficient, and highly automated financial operations.
-
AWS Promotes Responsible AI in the Well-Architected Generative AI Lens
AWS announced the availability of the new Well-Architected Generative AI Lens, focused on providing best practices for designing and operating generative AI workloads. The lens is aimed at organizations delivering robust and cost-effective generative AI solutions on AWS. The document offers cloud-agnostic best practices, implementation guidance and links to additional resources.
-
QCon London 2025 Day 2: the Form of AI, Securing AI Assistants, WASM Components in FaaS
The 19th annual QCon London conference took place at the The Queen Elizabeth II Conference Centre in London, England. This three-day event, organized by C4Media, consists of presentations by expert practitioners. Day Two, scheduled on April 8th, 2025, included a keynote address by Savannah Kunovsky and presentations from five conference tracks.