InfoQ Homepage Generative AI Content on InfoQ
-
From Alert Fatigue to Agent-Assisted Intelligent Observability
As systems grow, observability becomes harder to maintain and incidents harder to diagnose. Agentic observability layers AI on existing tools, starting in read-only mode to detect anomalies and summarize issues. Over time, agents add context, correlate signals, and automate low-risk tasks. This approach frees engineers to focus on analysis and judgment.
-
Spec Driven Development: When Architecture Becomes Executable
Spec-Driven Development inverts traditional architecture by making specifications executable and authoritative. It transforms declared intent into validated code through AI generation and provides architectural determinism. It eliminates drift through continuous enforcement, but demands new engineering discipline in schema design and contract-first reasoning.
-
Agentic Terminal - How Your Terminal Comes Alive with CLI Agents
In this article author Sachin Joglekar discusses the transformation of CLI terminals becoming agentic where developers can state goals while the AI agents plan, call tools, iterate, ask for approval where needed, and execute the requests. He also explains the planning styles for three different CLI tools: Gemini, Claude, and Auto-GPT.
-
InfoQ AI, ML and Data Engineering Trends Report - 2025
This InfoQ Trends Report offers readers a comprehensive overview of emerging trends and technologies in the areas of AI, ML, and Data Engineering. This report summarizes the InfoQ editorial team’s and external guests' view on the current trends in AI and ML technologies and what to look out for in the next 12 months.
-
Domain-Driven RAG: Building Accurate Enterprise Knowledge Systems through Distributed Ownership
Retrieval augmented generation (RAG) can help reduce LLM hallucination. Learn how applying high-quality metadata and distributing ownership of documents and prompts to domain experts can further increase accuracy in RAG applications. An additional layer of intelligence can use metadata to focus RAG searches on a specific domain for even better results.
-
Beyond Chatbots: Architecting Domain-Specific Generative AI for Operational Decision-Making
This article explores the use of domain-specific Generative AI, models that understand operational constraints, real-world dynamics, and business rules to generate executable strategies, not just text descriptions. These models require significantly smaller datasets and fewer parameters, making them cost-effective while enabling AI-driven core business decision intelligence at scale.
-
Building Trust in AI: Security and Risks in Highly Regulated Industries
Explore the transformative power of responsible AI across industries, emphasizing security, MLOps, and compliance. As AI drives innovation—from predicting hurricanes to enhancing legal workflows—organizations must prioritize ethical practices, transparency, and robust governance to safeguard sensitive data while navigating an evolving regulatory landscape.
-
Launching GenAI Productivity Tools: Insights and Lessons
In this article, based on a talk at QCon San Francisco 2024, author Mandy Gu shares some of the ways her company uses GenAI to enhance productivity and the lessons they learned along the way, including failed bets and features that were rolled back because of low user adoption. Most important, they learned to focus on building tools that were aligned with business goals.
-
Elevate Developer Experience with Generative AI Capabilities on AWS
This is a summary of a talk I gave at InfoQ Dev Summit Munich 2024. I discussed the transformative potential of generative AI in enhancing developer experiences, particularly through AWS. I’ll introduce key tools like Amazon Bedrock, Code Review Assistant, Agentic Code Generation, and Code Summarization in this article.
-
A Framework for Building Micro Metrics for LLM System Evaluation
LLM accuracy is a challenging topic to address and is much more multi-dimensional than a simple accuracy score. Denys Linkov introduces a framework for creating micro metrics to evaluate LLM systems, focusing on goal-aligned metrics that improve performance and reliability. By adopting an iterative "crawl, walk, run" methodology, teams can incrementally develop observability.
-
Architectural Intelligence – the Next AI
Architectural Intelligence is the ability to look beyond AI hype and identify real AI components. Determining how, where, and when to use AI elements comes down to traditional trade-off analysis. Like any technology, AI can be used creatively, but inappropriately. Identify if AI makes sense for your use case, then work to use it effectively to meet your needs.
-
Efficient Resource Management with Small Language Models (SLMs) in Edge Computing
Small Language Models (SLMs) bring AI inference to the edge without overwhelming the resource-constrained devices. In this article, author Suruchi Shah dives into how SLMs can be used in edge computing applications for learning and adapting to patterns in real-time, reducing the computational burden and making edge devices smarter.